May 27, 2020: Two recent AFM-papers

Recently two papers were published using two of our multifrequency AFM modes.

Junxue An et al., at Uppsala University studied PEGylated phospholipid coatings on silica microparticles. These kind of particles are of interest in the research of pulmonary drug delivery - drugs that are inhaled into the lungs. Nanomechanical mapping with Intermodulation AFM was used to confirm the presence of the coating and to study its homogeneity. The paper was published in Journal of Colloid and Interface Science, https://doi.org/10.1016/j.jcis.2020.05.045.

Dmitry S. Kharitonov et al. used Intermodulation Electrostatic Force Microscopy (ImEFM) to study corrosion properties of an aluminum alloy in molybdate-containing NaCl solution. With the help of ImEFM, the authors were able to gain insight into the microstructure of the alloy and could visualize IMPs (intermetalic particles) on the surface. "The ImEFM technique provides a higher lateral resolution and high potential resolution than commonly applied lift-mode techniques, such as in scanning Kelvin probe force microscopy (SKPFM)", writes Kharitonov. The paper was published in Corrosion Science, https://doi.org/10.1016/j.corsci.2020.108658

April 6, 2020: MLA measures fast pH-mediated changes in viscosity in voltage-modulated QCM

Professor Johannsmann and co-workers at TU Clausthal and Boeringer Ingelheim Pharma GmbH have published a paper in which the MLA is used for electrochemical quartz crystal microbalance. The paper titled "Fast pH-Mediated Changes of the Viscosity of Protein Solutions Studied with a Voltage-Modulated Quartz Crystal Microbalance (QCM)" was published in BioInterphases (Vol.15, Issue 2).

Go to paper

March 17: Vivace - a new high frequency platform

Due to the current ourbrake of Corona virus we obviously could not reveal our new product at the APS march meeting as intended. So instead we present Vivace, our new high frequency platform, right here on our webpage. Vivace has more inputs, more outputs and a much higher bandwidth of up to 4GHz compared to our 80MHz platform the MLA-3. At the same time it retains our signature sample perfect synchronization between inputs and outputs needed for multifrequency lockin and other phase coherent measurement schemes. Some early applications that we envision include readout and control of qubits.

Stay safe everyone!

Vivace product page

March 2 - 6 2020: Reveal new product at APS march meeting

We will reveal our latest product, Vivace, at the American Physical Society March meeting in Denver. Vivace is a new high frequency measurement platform aimed at among other things quantum computing research based on Xilinx Zynq UltraScale+ RFSoC with bandwidth up to 4 GHz. Visit our booth (#1305) to learn more about it and see it first hand!

There are also a number of presentations in the scientific program using our equipment and techniques:

APS march meeting exhibit

Nov 10, 2019: Ultrafast quarz crystal microbalance realized using MLA

A new paper been published demonstrating ultrafast QCMD (quarz crystal microbalance with dissipation) with the help of Intermodulation Products' Multifrequency Lockin Amplifier. The paper makes use of the ability to track changes in resonance frequency and quality factor, or more generally to track the admittance of a system at very high rates using coherent comb excitation.

"The MLA is a game changer to the QCM community. For measurements in liquids, millisecond time resolution becomes routine. When accumulation and averaging is applied to repetitive processes, the frequency noise can be in the millihertz range and even below." says Professor Diethelm Johannsmann at TU Clausthal, one of the corresponding authors of the study.

The paper is titled "An ultrafast quartz crystal microbalance based on a frequency comb approach delivers sub-millisecond time resolution" (DOI: 10.1063/1.5115979) and was published in Review of Scientific Instruments.

Go to paper

July 29 - Aug 2, 2019: Exhibiting at NC-AFM in Regensburg

We are an exhibitor at the 22nd International Conference on Non-contact Atomic Force Microscopy in Regensburg, Germany. We look forward to meeting you there. Click the link to read more about the conference. Two of the founders of Intermodulation Products, Dr. Daniel Platz and Dr. Daniel Forchheimer, are also presenting their scientific research at the conference.

June 23-26, 2019: Meet us at Transducers 2019 in Berlin

Intermodulation Products is a proud sponsor of Transducers 2019 and EUROSENSORS XXXIII held at the Estrel Congress Center in Berlin. Visit us in booth 50 from Monday to Wednesday and learn about our lockin products and multifrequency measurement capabilities. The event is one of the world's premier conferences on microelectromechanical-systems (MEMS). Read more about it by clicking the link below to the conference website.

April 19, 2019: Multifrequency method for measuring nonlinear current-voltage characteristics

Our Multifrequency Lockin Amplifier (MLA) was used to realize a new type of low-noise measurement of nonlinear current-voltage characteristics. The method solves many long-standing problems for such measurements in high-impedance nano-scale junctions, allowing for easy cancellation of parallel displacement current, separation of the galvanic and displacement currents flowing in the junction, as well as enhanced measurement speed due to parallel acquisition of many Fourier coefficients.

February 5, 2019: Customer publishes two papers using Intermodulation AFM

Researchers at Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin have recently published two papers using Intermodulation AFM, studying boehmite nanoparticles embeded in an epoxy matrix. One paper in MDPI Polymers (https://doi.org/10.3390/polym11020235) combines Intermodulation AFM with scanning Kelvin Probe Microscopy (SKPM) while the other, published in Elsevier Polymer (https://doi.org/10.1016/j.polymer.2018.12.054) studies the sample with both Intermodulation AFM for nanoscale resolution force measurements and with DMTA (dynamic mechanical thermal analysis) to obtain information about the crosslinking density of the matrix.Follow the links above for to read the open access papers. BAM is a senior scientific and technical Federal institute with responsibility to the Federal Ministry for Economic Affairs and Energy [in Germany]. It tests, researches and advises to protect people, the environment and material goods (BAM, about us).

January 28, 2019: Intermodulation used to reconstruct fast dynamics

Nanostructure Physics at KTH published a paper describing intermodulation spectroscopy as an alternative to pump-probe methods for reconstructing fast dynamics. The paper derives the theoretical limitations on this frequency-domain approach and it demonstrates the reconstruction of the fast (30 ns) decay of surface charge using multifrequency electrostatic force microscopy.

January 1, 2019: EU project QAFM is launched

Intermodulation Products is part of a new EU funded research project QAFM, financed by the FET-Open program. The project aims to apply ideas from the field of Opto-mechanics, and push toward a quantum-limited force sensor for dynamic AFM.

September, 2018: Superconducting Qubits

Intermodulation Products starts work on a new project to control and readout superconducting quantum bits, as part of a large Swedish consortium: the Wallenberg Center for Quantum Technology (WACQT).

August 20-24, 2018: Silver sponsor of SPM-on-SPM

Intermodulation Products is a silver sponsor of the 4th International Conference on Scanning Probe Microscopy on Soft and Polymeric Materials in Leuven, Belgium. We will exhibit our lockin amplifier and AFM applications and there will also be several talks from researchers using our techniques.

April 18-20, 2018: IMP at Multifrequency AFM 2018

Intermodulation Products will demonstrate the new third-generation multifrequency lockin, the MLA-3 at the 7th Multifrequency AFM conference in Madrid.

Update: Daniel Forchheimer of Intermodulation Products, won the 2nd prize poster award for his poster describing how machine learning algorithms such as K-means clustering could be used in combination with Intermodulation Atomic Force Microscopy.

Sept. 18-22, 2017: Intermodulation AFM on display at the EMRS in Warsaw.

Intermodulation Products will have a booth at the European Materials Research Society annual conference In Warsaw, Poland. Talks will be given by Riccardo Borgani and Daniel Forchheimer.

Aug. 9-16, 2017: Intermodulation lockin on display at LT-28

Intermodulaiton Products had a display booth and gave demonstrations at the 28th International Conference on Low Temperature Physics. Our Multifrequency Lockin Amplifier (MLA) is making in-roads in to the low temperature physics community, where it has been used to multiplex the readout of mechanical oscillators working in superfluid.

Nov. 4, 2016: Review article published

The journal Current Opinions in Colloid & Interface Science published an invited review article: 'Quantitative force microscopy from a dynamic point of view' . The article describes recent developments in dynamic AFM, placing Intermodulation AFM in a broader context.

August 17, 2016: Intermodulation EFM reveals hole traps in high voltage insulation materials

Intermodulation Electrostatic Force Microscopy (ImEFM) maps the surface potential with very with high spatial resolution. By applying a DC bias to the tip (not possible with standard KPFM) the method can also study how the surface potential changes with the injection and extraction of charges in an insulator. The method was used to study individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. This material is currently of great interest for high voltage transmission cables. The experimental results were explained with a simple band structure model where localized electronic states in the band gap (hole traps) exist in the vicinity of the nanoparticles. See our publication in Nano Letters.

March 30 - April 1, 2016: 6th Multifrequency AFM conference in Madrid

The latest results with Intermodulation AFM were reported: mechanical mapping of viscoelastic surfaces, high resolution surface potential maps of graphene, machine learning to optimize material contrast, and interaction analysis in terms of force kernels. Intermodulation Products demonstrated the 42 frequency lockin at the booth.

March 8-10, 2016: Intermodulation Products at DPG 2016, Regensburg, Stand no. 102

Come and visit us at the exibition of the Deutsche Physikalische Gesellschaft, March 8-10, in Regensburg, Germany. Drop by booth 102, or if you would like to book a special meeting time, feel free to contact us at info@intermodulation-products.com.

January 26, 2016: Intermodulation Lockin recieves US Patent

The United States Patent and Trademark Office issued a patent to Intermodulation Products for the Intermodulation Lockin. The Intermodulation Analyser (ImLA)™ (also called Multifrequency Lockin Amplifier, MLA™) was preiously described in the Review of Scientific Instruments. The MLA™ enables Intermodulation Spectroscopy and Intermodulation Atomic Force Microscopy. Dr. Erik Tholén, CEO of Intermodulation Products AB and chief architect of the instrument reports: "We are really happy to see this patent come in to place, securing our technical innovation. Already in it's third generation, the MLA is starting to make a big impact in laboratories around the world. We're excited to get this fantastic instrument in to the hands of new users who want to develop there own multifrequency measurements."

October 14, 2015: Intermodulation AFM provides new insights to soft materials.

Intermodulation AFM makes ground breaking advancement in probing and understanding the viscoelastic properties of Soft material interfaces. A collaboration between the University of Mons and KTH Nanostructure Physics used Intermodulation AFM (ImAFM) and dynamic force quadratures to show that large amplitude surface motion results when dynamic AFM is performed on soft materials. Prof. David Haviland says of this work: "The observation of large amplitude surface motion changes our entire understanding of material property mapping with the AFM. No longer can we represent the interaction in terms of simple force-distance curves. ImAFM was instrumental in making these observations, and the moving surface model introduced in this work represents a new approach to probing viscoelasticity with the AFM."